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We consider a closed gaseous system immersed in a heat bath undergoing a 
thermal explosion. The effects of instantaneous fluctuations in the temperature 
on the heat removal mechanism and on the reaction rate are considered. The 
intensity of the fluctuations in situations far from equilibrium is determined by 
calculating the temperature self-correlation. This quantity scales with the inverse 
of an effective volume f~ obtained from generalized fluctuation-dissipation 
theory. This determines a virtual system corresponding to the localized ignition 
process, possibly leading to a global runaway. The induction period is identified 
with the Kramers mean passage time for diffusion across a kinetic barrier. The 
induction period is thus shown to be dependent on the fluctuation volume I2. 
The diffusion process is hastened by the critical fluctuations. The explosive 
decomposition of ethyl azide was selected to test the theory and the results 
exhibit very good agreement with experimental data. Our treatment resolves the 
previous discrepancy between the predictions rooted in the classical Frank- 
Kamenetsky treatment and the premature ignition observed experimentally. 

1. I N T R O D U C T I O N  

The aim of  this work  is to provide  a r igorous f ramework  for demonst ra t -  

ing the s tochast ic  cont r ibut ion  to ignit ion processes in gaseous closed 

systems. That  is, we shall descr ibe the p h e n o m e n o n  of  igni t ion in a statistical 

sense. In an ensemble  o f  real izat ions of  the combus t ion  exper iment ,  some 

~eplicas o f  the system will present  a de layed  explos ion  and others an 

accelera ted  ignition. In order  to apprecia te  the results presented  in this 

work, we emphas ize  the physical  difference be tween  critical nonequ i l ib r ium 

fluctuations responsible  for ignit ion and f luctuations near  t h e r m o d y n a m i c  

equi l ibr ium.  Crit ical  f luctuat ions are assumed to be localized in space and 

the physical  consequences  o f  such an assumpt ion  will be examined.  This 

issue is discussed in a general  context  in G r a h a m  (1975), Fernfindez (1985a), 
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Baras et aL (1983), Fernfindez and Rabitz (1987), and Horsthemke and 
Brenig (1977). We shall show that the mean magnitude of the temperature 
fluctuations cannot be scaled with the inverse of the thermodynamic macro- 
scopic volume V, as is the case near equilibrium. In previous work (Baras 
et al., 1983), the critical fluctuations responsible for ignition were treated 
as if they were equilibrium fluctuations, scaling with V -1. An estimate for 
the induction period under these equilibrium assumptions produces values 
off by several orders of magnitude (Baras et aL, 1983). Making use of the 
fact that fluctuations are localized in space, we shall implement a stochastic 
treatment of the problem that explains and circumvents the latter dramatic 
discrepancy. The new calculated induction periods in this paper exhibit 
very good agreement v~ith the experimental results. The general theoretical 
background of the method will be presented in this section. The physical 
framework for the fluctuation-controlled ignition is determined by the 
following related features and assumptions: 

1. An ensemble of  realizations of  the combustion experiment occurs under 
far-from-equilibrium conditions. 

2. A virtual volume exists within which localized critical fluctuations are 
confined. 

3. The temperature is treated as a continuous stochastic variable within 
the induction period. The volume-averaged temperature T admits 
to a probability distribution P(T, t) over the ensemble. The distribu- 
tion P satisfies a Fokker-Planck equation whose drift term is deter- 
mined by a potential U = U(T). This model and the potential will 
be described in detail in the next section. 

4. The induction period is associated with a diffusion process caused 
by the critical fluctuations that drive the system over a barrier in 
the potential U. 

Based on these notions, two broad physical regimes will be considered 
for gas-phase ignition: 

I. A low-pressure regime (0.01-0.05 atm), where an inhomogeneous 
temperature distribution affects the heat exchange process with the vessel 
walls. No convection or acoustic field effects are taken into account. In this 
case, the instantaneous fluctuations in T do not affect the reaction rate 
(Lermant and Yip, 1984; Frank-Kamenetsky, 1955; Bowden and Yoffe, 
1958; Friedman, 1963; Tsug6 and Sagara, 1976). 

II. A moderately low-pressure regime (0.05-0.12 atm), where tur- 
bulence effects are given by the nonvanishing self-correlation of temperature 
(Tsug6 and Sagara, 1976). The effect of instantaneous fluctuations in T is 
not negligible (Tsug6 and Sagara, 1976) and both the heat exchange as well 
as the reaction rates are affected. 
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There are two time scales involved in these regimes: (1) a time scale 
associated with the local fluctuations in T and (2) a time scale associated 
with the fluctuations of the global spatial temperature profile about T. 
Following Lermant and Yip (1984) and Tsug6 and Sagara (1976) (see also 
Section 2), we shall assume that there exists a separation between these 
latter time scales so that the temperature profile adjusts itself faster than 
the first timescale, which is involved in the Fokker-Planck equation indi- 
cated in item 3 above. The regime I involves only the second time scale, 
while regime II involves both time scales. 

The concept of localized fluctuations will be formalized by calculating 
the effective size ~ of a virtual hot spot where fluctuations are confined. 
The localized ignition will eventually lead to a global runaway. Critical 
fluctuations scale with ~-1 and not with V -1. The effective size of the hot 
spot will be obtained from generalized fluctuation-dissipation theory, mak- 
ing use of the property of conservation of energy: the total energy of the 
extended system comprising the closed gaseous system together with the 
heat bath is a constant. This effective size ~ is dependent on the thermody- 
namic volume V and the curvature of the maximum in the bistable potential 
U. The induction period is given by the Kramers mean passage time for 
the unsymmetric bistable potential. This potential is obtained from the 
competition between the heat source provided by the exothermic chemical 
reactions (Lermant and Yip, 1984; Frank-Kamenetsky, 1955; Bowden and 
Yoffe, 1958; Friedman, 1963; Tsug6 and Sagara, 1976) and the heat removal 
process (Lermant and Yip, 1984; Frank-Kamenetsky, 1955; Bowden and 
Yoffe, 1958; Friedman, 1963). One minimum in this potential corresponds 
to the stationary nonexplosive temperature for the steady combustion, and 
the other minimum to the explosive temperature regime. The inflection 
point of interest lies between the minimum for the steady combustion and 
the maximum corresponding to the ignition temperature. The potential is 
parametrically dependent on the coefficient for heat exchange with the 
surroundings. In the situation under examination here, the heat exchange 
coefficient has reached its critical value. The shape of the potential at 
criticality is such that the inflection point coalesces with the steady combus- 
tion minimum to become a flat critical point. The discrepancy between the 
equilibrium thermodynamics approach as described above (Baras et al., 
1983) and the experiments can be explained as follows (see also Frank- 
Kamenetsky, 1955; Bowden and Yoffe, 1958; Friedman, 1963; Tsug6 and 
Sagara, 1976; and van Kampen, 1981). Should the effective diffusion 
coefficient, which gives the temperature self-correlation, scale with the 
inverse of the macroscopic volume, the diffusion across the barrier of U 
induced by the equilibrium fluctuations would be a very slow process. 
However, since far-from-equilibrium critical fluctuations are localized, and 
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therefore are enhanced with respect to their equilibrium counterparts, the 
diffusion process is accelerated substantially. This diffusion process will be 
modeled by means of a Fokker-Planck equation to be satisfied by the 
distribution P(T, t). Such an equation is only valid within the induction 
period, that is, before internal fluctuations lead to macroscopic consequen- 
ces. After this period has elapsed, the probability density develops two 
peaks, one at each side of  the flat maximum of the potential at criticality. 

The scaling parameter fl-1 can be regarded as a small parameter only 
in the thermodynamic limit for a rarefied gas in the regime I. In this situation, 
the notation l-I = 1)o will be adopted. In this case the only physical factor 
that accounts for the difference between ~o and V is the inhomogeneous 
distribution of temperature in the vessel due to heat conduction with vessel 
walls. This distribution will be evaluated in this work for a heat conduction 
regime in a nonequilibrium gas. Despite the fact that the volume V and 
the size 12 of the virtual hot spots are different, they behave equivalently 
in the thermodynamic limit: 

lim 1~o = ~ for regime I (1) 
V ~ o O  

The behavior of the effective size parameter in the thermodynamic limit 
under regime II will be studied in Section 2. Numerical computations are 
presented in Section 4. 

At this point, we should comment on the conceptual difference between 
the "intrinsic" hot spot in our system, which arises from the spatial localiz- 
ation of the temperature fluctuations, and an " induced" hot spot, created 
by mechanical action on a solid explosive material (Bowden and Yoffe, 
1958; Friedman, 1963). In the latter case, the effective size of the hot spot 
does not depend parametrically on the thermodynamic volume or on the 
temperature self-correlations, as is the case with our intrinsic hot spot. 
During the induction period, the amount of  heat produced by the exothermic 
reaction in the induced hot spot is very small and the cooling process is 
little affected by the fact that the material is reactive or inert. The distribution 
of temperatures in the induced hot spot follows qualitatively the same law 
that we have derived for the temperature profile in our closed system, where 
the highest temperature occurs at the center in the case of a spherical vessel 
[cf. Section 3 of  this work and Bowden and Yoffe (1958) and Friedman 
(1963)]. In the solid reactive material, an explosion will occur at the center 
of  the hot spot only if the induction period is smaller than the time it takes 
the "cold front," or cooling wave, to reach the center. Making use of this 
property, one calculates a lower bound for the effective size of the induced 
hot spot. Instead, the effective size of our hot spots can be obtained directly 
by calculating the magnitude of the critical fluctuations that trigger the 
explosion. 
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2. A RECURSIVE RELATION LEADING TO A CONVERGENT 
SEQUENCE FOR THE SIZE PARAMETER fl  

We shall be concerned with fluctuations driving the system beyond the 
basin of attraction of a steady state into the basin of another steady state. 
In our case, each of these basins is a well in the potential /.7. The probability 
of fluctuations is not negligible if the system operates near the boundary 
of the basin of attraction of a minimum, as is the case with U at criticality 
(Horsthemke and Brenig, 1977; van Kampen, 1981). Rigorously, the proxim- 
ity of the initial condition to the threshold of the basin of attraction leading 
to macroscopic consequences depends on the effective diffusion coefficient 
f 2  which gives the temperature autocorrelation in time. The proximity 
determines the magnitude of the barrier M that should be overcome to 
reach a new basin of attraction. The quantity M vanishes if the initial 
condition is at the threshold. Therefore, the relevant proximity is determined 
by an imposed range in the Kramers mean passage time, since this quantity 
is proportional to exp(M/f2). 

Ignition processes due to critical internal fluctuations leading to thermal 
explosions illustrate this situation (Lermant and Yip, 1984; Frank- 
Kamenetsky, 1955; Bowden and Yoffe, 1958; Friedman, 1963). We shall 
sketch the kinetic consequences of the hot spot formation, examine in detail 
the potential U, and derive, finally, the quantity {2 in order to calculate the 
induction periods in regimes I and II. We shall assume that a single 
exothermic reaction is the rate-determining step in the kinetics (Lermant 
and Yip, 1984; Frank-Kamenetsky, 1955; Bowden and Yoffe, 1958; 
Friedman, 1963). The detailed kinetics for the process are not required, 
since the present analysis is concerned with fluctuations in T (Tsug6 and 
Sagara, 1976). Detailed chemistry can influence the significance of the 
temperature fluctuations and their inclusion could be considered for a more 
refined analysis. The net change in the reaction concentration (given by the 
number of molecules per unit volume) due to the microscopic occurrence 
of the exothermic elementary reaction will be denoted w. This quantity 
scales at equilibrium with the inverse volume: 

Weq = o / V  (2) 

where o is the stoichiometric coefficient for the reactant. However, if the 
reaction is confined to a virtual volume ~ at the ignition temperature, the 
microscopic occurrence is amplified: 

w = o/f~ (3) 

We shall prove that the local character of the ignition fluctuations is reflected 
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in the following relation, which holds in the thermodynamic limit: 

lim (Weq/W) = 0 (4) 
V---~ oo 

This relation is valid even at low pressures, when ~o is a good approximation 
for ~ [this is shown in the work leading to equation (35) below] 

lira Weq/W(flO) = lim V1/3/V = 0 (5) 
V~cx) V ~  

We define recursively the hierarchy 

g ~ ~ 0 ~ - ~ l  ~ 2 ~ - - -  �9 �9 . ~  (6) 

This sequence is a computational artifact arising in a recursive relation for 
a self-consistent derivation of fL The recursive relation will be derived 
below. The only meaningful elements in the sequence are V, ~o, and ~.  
The effective size f~o corresponds to the regime I as given in the introduction 
and the Eli Can be regarded as approximations to I). The convergence of 
the sequence is faster at low pressures (as we approach regime I), as shown 
in our example of the ethyl azide in Section 4. The monotonically decreasing 
sequence is bounded from below; hence, its limit exists and is given by 

lim Eli = ~ (7) 
j ~ e o  

The drift term in the transient bimodality regime is determined by a 
bistable potential U = U(T)  (van Kampen, 1981; Ferngmdez, 1985b). A bar 
on top of any quantity denotes its volume average. This potential is param- 
etrically dependent on f~ and on y, a quantity that gives the degree of 
inhomogeneity in the temperature distribution: 

y=  (x2)V2; T= ~+x;  JZ=0; Ix/7"l<< 1, 
(8) 

I x / ( r ,  - 7"0)I<< 1 

The variable x corresponds to the rapidly evolving temperature profile. 
Thus, x is a space-dependent variable. T~ is the ignition temperature and 
To is the temperature of the heat bath. 

These local fluctuations in the temperature profile are assumed to occur 
on a faster time scale than the time-dependent global fluctuations of the 
average temperature T. This is a basic tenet in previous approaches (Tsug6 
and Sagara, 1978), in which the inhomogeneous distribution of temperature 
is averaged to yield T and only the fluctuations of T are considered. It is 
precisely this tenet that justifies the separation of the time and space 
dependences of temperature fluctuations. 

We shall make explicit use of this fact in the present work: Since x 
adjusts itself on a faster time scale, the average quantity y enters as a 
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parameter in the evolution equation (Horsthemke and Brenig, 1977) for T. 
In our stochastic formulation, the self-correlation in time for the fluctuations 
of T will also be shown to be dependent parametrically on y. The dependence 
of U on 12 is due to the instantaneous fluctuations, which affect the reaction 
rate (Tsug6 and Sagara, 1978). It is precisely this fact that will allow us to 
derive a recursive formula of the form 

~j+l = F(~j) ,  j =0,  1 , . . .  (9) 

The potential will be given by the indefinite integral over iP of the difference 
between the heat production rate, determined by the exothermic reaction, 
and the heat removal rate in a thermal conduction regime [cf. equation (14) 
below]. The graphs for the two rates as functions of T intersect in three 
points, which correspond, respectively, to the three critical points in the 
bistable potential U (Baras et al., 1983). 

In order to define U explicitly, a few concepts need to be introduced. 
The function f2 =f2(f~) will denote the intensity of the time-dependent 
fluctuations as determined by the following ensemble averages: 

(AT(t)) -- 0; (AT(t)AT"(t ' ))  =f2( f~)6( t -  t') (10) 

These fluctuations occur on a slower time scale than that for the adjustment 
of the profile x. In the case of a large activation energy ( E / R T  >> 1), typically 
the case for thermal explosions, the Arrhenius rate should be replaced by 
a turbulent reaction rate (Tsug6 and Sagara, 1978): 

Arrhenius rate = A exp ( -  E / R ]?) (11) 

turbulent rate = �89 exp[-  E / R ( T + 4f) ] (12) 

We shall obtain explicitly the covariance f~ in the heat conduction regime 
for a nonequilibrium gas in contact with a heat bath. This quantity is t~ken 
as an adjustable parameter in Tsug6 and Sagara (1978). 

The mean heat removal term is given by yo(T-To) ,  where 7o is the 
heat exchange coefficient. A more realistic analysis with an inhomogeneous 
temperature distribution requires 

y = "/o+/3 (y) (13) 

where y is the actual heat exchange coefficient and yo the apparent one, 
which occurs in the limit y =0. The derivation of the size-dependent 
parameter f l (y)  is given in Section 3. A spherical vessel will be considered 
not only for mathematical simplicity, but also since this situation corre- 
sponds to the experimental conditions of relevance (Rice, 1940; Rice et aL, 
1935; Boddington et al., 1983). 
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The potential is given by 

U = U ( T , y , n )  

= f d I '  ( [y0+fl(y)](  T -  To) -~To e x p { - E / R [ T + 4 f ( a ) ] } )  
d 

where 

(14) 

= sog/2Vro (15) 

and the following notation has been adopted: S is the surface area; V is 
the volume; R is the universal gas constant; ro is the radius of the vessel; 
0 = A/or; cpA is the heat conduction constant; c is the specific heat; p is 
the density; cr = QA(pcTo)-I; Q is the exothermic heat of reaction;/z is the 
Nusselt number; and A is a preexponential factor in the reaction rate. The 
parameter o- allows us to introduce a dimensionless time r, defined as r = o't, 
associated with the chemical rate process. 

The ignition temperature T~ corresponds to a flat maximum at the 
critical regime considered, since the inflection point between T~, the tem- 
perature for steady combustion, and T~ coalesces with Ta, thus determining 
that the curvature of U at T~ should be regarded as a small parameter of 
the system. Thus, at the ignition temperature, we have 

0 2 0 
u = ~ - 5  U(T~) ~<0; ~ U(T~) = 0 (16) 

The ignition temperature is related to the temperature for steady combustion 
by the following approximate formula (Frank-Kamenetsky, 1955; Bowden 
and Yoffe, 1958; Friedman, 1963); 

7],. = T~ + 1.60RT~/E (17) 

Within the time scale given by the induction period, the potential can 
be approximated by the parabola given by (van Kampen, 1981) 

u =  u (  r,) + u/2(  ~ -  T,) 2 (18) 

This approximation is adequate only within the time scale for validity of the 
Fokker-Planck equation, that is, during the induction period. After this period, 
the probability density develops two peaks and does not satisfy the Fokker- 
Planck equation. 

The next stage is to determine the effective size of the hot spot. The 
Fokker-Planck equation for P(T, t) is subject to the detailed balance prin- 
ciple under generalized fluctuation-dissipation conditions (van Kampen, 
1981). In the context of interest to us, the total energy of the closed gaseous 
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system together with the heat bath is a constant. Thus, the equation for the 
distribution of temperature deviations is 

OP 1 0 0 (P(z,r 
~r (z, r) = ~ ~z P~(z)fZ ~z \ ~ /  (19) 

where z -- T -  T~, P(z, r) is the probability distribution, PS(z) is the station- 
ary distribution= N -~ e x p [ - U ( z +  T~)/f2], and N -~ is the normalization 
constant. 

The necessary and sufficient condition to be satisfied by equations (18) 
and (19) in order to have detailed balance under generalized fluctuation- 
dissipation conditions is (van Kampen, 1981) 

0 [p~(z)f2 ] (20) uz = l [ P S ( z ) ] - ~  0-~ 

This relation can be interpreted as a flux or current-matching condition. 
An expression for the covariance can be obtained by expanding ps around 
T~ in powers of z and making use of the definition given by equation (14). 
Retaining only the lowest order term in z and substituting into equation 
(20), we get 

f2=f~(n)v- l= v-l{Tg exp[-E/R(T~+4f)]+[yo+/3(y)](T~+ Tg)} (21) 

The inverse size parameter D -~ is defined as the scaling factor for the 
time-dependent fluctuations that appear when we make use of classical 
Semenov theory in the equilibrium problem at the hot spot. Within this 
virtual system, y = 0 and the rate of reaction is nonturbulent: 

f2=faofUl=gt '[Tgexp(-E/RT~)+yo(T~+ T2o)] (22) 

Thus, from equations (21) and (22), we obtain 

a~ V =fz/f~(l)) (23) 

Equation (23) is a transcendental relation, which will be solved in an 
iteratifve self-consistent way. This recursive method requires a sequence 
(or hierarchy) of Ftj defined in an inductive way: 

r io/V =fo2{ T~ exp(-E/RT~) + [%+/3 (y)](T~ + T~)} -1 

~'~j+l/ V = f~/f~(aj) (24) 

As can be easily verified, the sequence is monotonically decreasing and 
bounded from below; therefore, relation (7) holds. The sequence of ~j  
should be regarded as a result of the computation oft) .  At very low pressures, 
approaching regime I, Fro coincides with fL Within regime II, Ft3 is already 
a good approximation for ft, as shown in Section 4. 
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3. SCALING OF FLUCTUATIONS FOR AN I N H O M O G E N E O U S  
D I S T R I B U T I O N  O F  T E M P E R A T U R E S  

The purpose of this section is to analyze how l~o behaves near the 
thermodynamic limit. This requires the calculation of /3 =/3(y), which 
determines the size effects on the heat exchange coefficient when the system 
operates in a heat conduction regime. It is easily demonstrated that 

lira 13 = 0 (25) 
y + 0  

Therefore, in the limit of a homogeneous distribution, we have 

lira fro = V (26) 
y ~ 0  

In order to proceed with the evaluation of/3, we first consider the thermal 
diffusion equation for the temperature evolution including the reactive heat 
s o u r c e :  

(d /dz ) (T+x)-O div g r a d ( T + x )  = Toexp[-E/R(T+x)] (27) 

By taking the volume average in this equation and making use of equation 
(12) and the facts that :~ = 0 and grad T = 0, we get 

(d/dr) 7"- 0 div grad x = To exp{-E/R[ T +  4f(~)]} (28) 

The heat exchange at the walls is governed in the thermal conduction regime 
by the following relation (Frank-Kamenetsky, 1955; Bowden and Yoffe, 
1958; Friedman, 1963): 

- Ix--2~ ( Tb -- To) ( 2 9 )  - n  �9 (grad x)b - 2ro 

The index b indicates that the quantities are evaluated at the boundary. 
The normalized outward unit vector at the boundary is n, and no is 

the Nusselt number theoretically estimated by Frank-Kamenetsky (1955). 
His estimation is tx0 = 3.39. 

We can now make use of Gauss' divergence theorem and combine 
equations (28) and (29) to obtain 

(d/d-r) T + y( T -  To)+ t~oh(2 Vo'ro) -~ Js x ds 

= To exp[-E/R(T+4f)]  (30) 

In order to obtain an equation for x, we subtract equation (30) from 
(27). This gives, disregarding terms of order x 2, a stationary equation for 
x in which the transport effects are decoupled from the kinetics: 

Odivgradx+htXo(~r2Vro)-l[IsXdS+S(T-To)} = 0 (31) 
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Given that the magnitude of x is small compared to the difference 
T -  To near the ignition point (see Tsug6 and Sagara, 1978), we can disregard 
the integral when compared with the term S ( T -  To) in (31). Then, to order 
x, we get by direct integration of (31) for the case of a spherical vessel 

-/o ( r  3 2 
x : ~ To)(~o- r ~) (32) 

Y~ r2o (33) 1 3 = ~  

( 3 ) l / 2 y o r ~ ( T i - T o )  (34) 
Y = (x2)~/~ = 1-~ 0 

Relation (32) can be verified directly by differentiating twice with 
respect to r: we can see that (31) is satisfied if we disregard the term 
proportional to the surface integral of x. This is a valid approximation 
according to equation (8). The integration constant (3/5)r~ is determined 
from the condition )7 = 0 already specified in (8). 

The behavior of [20 at the thermodynamic limit can be obtained from 
3 equations (22), (24), and (33): V is of order ro, and [)0/V is of order r02 

for large ro corresponding to the thermodynamic limit. Therefore, we get 

f~o ~ O(  v ~/3) (35) 

4. THE INFLUENCE OF TURBULENT INSTANTANEOUS 
FLUCTUATIONS ON THE INDUCTION PERIOD 

In this section the theory presented will be tested against experimental 
evidence. The induction time tin([2) is obtained by determining the mean 
passage time for the parabolic approximation from equations (16)-(18): 

h~([2) ~~ dz U(T~)[27rf2([2)ll/2 
- f2(ft)o_ N e x p ~ [ .  ~ j [ l + O ( f 2 ) ]  (36) 

It should be noticed that the induction period, or, equivalently, the 
Kramers mean passage time for the diffusion across the barrier is not a 
stochastic variable. This is so since it is a function of the ensemble-averaged 
quantity f and not of the stochastic variable AT(t). 

Numerical computations for the case of the thermal explosions of ethyl 
azide (Rice, 1940; Rice et al., 1935; Boddington et al., 1983) reveal that in 
the case of a rarefied gas (0.01-0.05 atm) the convergence of the numerical 
sequence hn([2j) is extremely fast and tin(f~o) is already a very good approxi- 
mation to the actual ignition time given by 

lim tin(f~j) = t~n (37) 
j~eo 
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The expe r imen ta l  da t a  are  as fol lows (Rice,  1940; Rice et al., 1935); 

ro = 3.63 cm, Q = 55 k c a l / m o l e ,  E = 39 K c a l / m o l e  

cpA = 10 - 4  cal K -1 cm -1 sec -1. 

Two cases will be cons ide red :  

(a) P = 16 mm, A = 0.028 exp(E/RTo)  sec -1, To = 553 K, n = 0.46 x 
10 -6 m o l e / c m  3 

(b) P = 92 mm, A = 0.0085 exp(E/RTo)  sec -1, To = 533 K, n = 2.76 x 
10 -6 m o l e / c m  3 

Mak ing  use o f  the  work ing  equat ions  (21)- (24) ,  we find for  case (a) 

f(I)o)/T~ = 0.00201, f ( l ) ) /T~ = f ( f ~ l ) / T ,  = 0.00205 (38) 

The e n h a n c e m e n t  o f  f luc tuat ions  with respec t  to the  equ i l ib r ium s i tua t ion  
can thus  be  a t t r ibu ted  exclus ively  to the /3 con t r ibu t ion ,  that  is, to the 
i n h o m o g e n e o u s  t e m p e r a t u r e  d is t r ibu t ion ,  and  we find 

tin(~'~0) = tin = 1.66 sec 

This va lue  is in sa t i s fac tory  ag reemen t  with the exper imen ta l  value  es t imated  
as 2 sec. In  case (b),  the  s i tua t ion  is r ad ica l ly  different,  as the fo l lowing  

results  show:  

f ( l~o)/T,  = 0.0044; f ( l ) l ) /T~ = 0.027; f(f~2)/T~ = 0.030 

f (~3 ) /T /~ f (~Q4) / r~ -  ~-f(l))/T~ = 0.031 

D . o / V =  0.81; D J  V = 0 . 2 9 ;  D.2/V = 0.014; ~ Q 3 / g  = 0 . 0 1 2  

~3/ V ~ 1~4/ V ~ ~ /  V ~ 0.012 

tin(D.O) = 16.6 sec; tin(Dq) = 7.13 sec; t~,,(~O2) = 5.55 sec 

tin(~C~3) = 5.22 sec; tin(~'~3) ~ t i n ( ~ 4 )  ~ t i n ( ~  ) = 5.22 sec 

This last  result  exhibi ts  aga in  sa t i s fac tory  agreement  with the exper i -  
menta l  measurement s ,  which  give an igni t ion t ime o f  5 sec. 

We can conc lude  tha t  the tu rbu len t  effects due  to t empe ra tu r e  
au tocor re l a t ions  are very crucial  even at  m o d e r a t e l y  low pressures .  

F ina l ly ,  a c o m p u t a t i o n  has been  car r ied  out  at pressures  b e y o n d  the 
expe r imen ta l  range  II  for  the sake o f  s tudying  the rate o f  convergence  o f  
the  sequence  o f  size p a r a m e t e r s  and  to c o m p a r e  with prev ious  cases. The 
cond i t ions  chosen  are 

A = 7 x 10 -2  exp(E/RTo)  sec 1, To = 533 K 
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with the other parameters being the same. Since the turbulent effects become 
crucial in the evaluation of  the reaction rate, even more so than in regime 
II, the results show, as expected, a slower rate of convergence: 

i ) o / V  = 0.86, f l l / V  = 0.20, [ I s / V  = 9 x 10 -3 

fl9/V~illo/V = 6.6 • 10-4 ~ I I / V  

The turbulent effects are so considerable that ten iterations are required 
and the ignition period has departed considerably from the starting term: 

tin(~Q0) = 19 sec, tin(~9) ~ tin(~Qlo ) ~ t in(~ ) = 0.87 sec  
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